

Lecture 1

Monday, 26 January 2026 8:41 AM

Admin Stuff

Classes Tu & Thu 11:30 - 1

Ok for qualifiers

Assessment: 4 SWs, 1 in-class exam, seminar
(50%) (25%) (25%)

Can work together on SWs, but:

- don't search online for solutions
- write yourself (no copying)
- cite references (if you discussed w/ sb dy, or looked up a theorem)

This course:

Linear programming techniques

- possibly the most imp tool in algorithms, OR, combinatorial optimization
- for many optimization problems, first approach should be to write it as an LP.
- looking at the dual LP is often useful

6-7 lectures on LPs

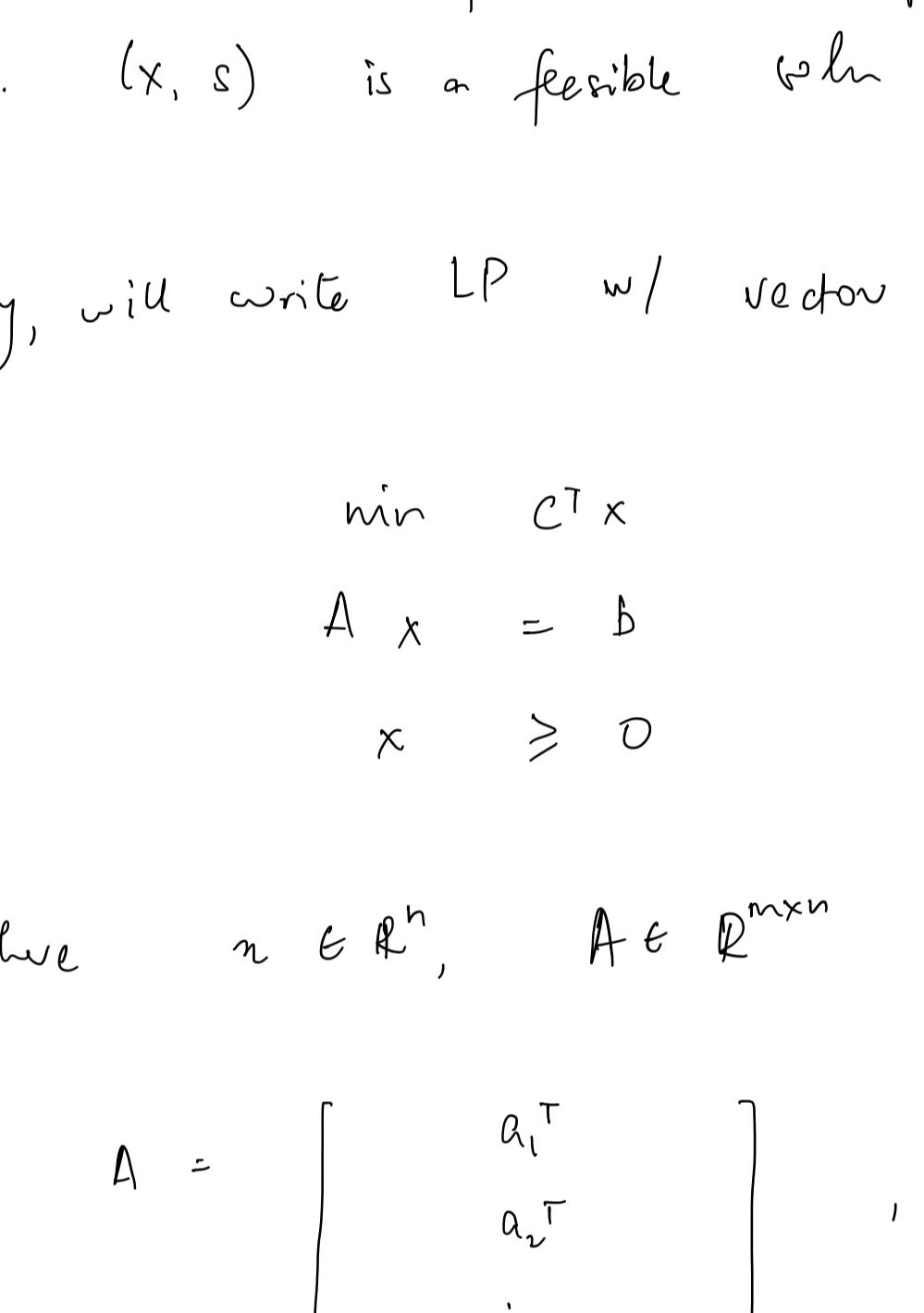
- modeling, geometry, solving LPs, duality, properties incl. total unimodularity.

Will then move on to algos using LPs.

Examples: graphical solution!

Geometry is v. imp., should be able to see & visualize the problem

e.g. $\begin{aligned} & \text{maximize} && x_1 + x_2 \\ & \text{subject to} && x_1 + 2x_2 \leq 3 \\ & && 2x_1 + x_2 \leq 3 \\ & && x_1, x_2 \geq 0 \end{aligned}$



fix c , consider the line $x_1 + x_2 = c$ (slope -1, \perp to $(1, 1)$)
max c s.t. a feasible x_1, x_2 is on this line
↓ note that this occurs on a "corner" of the feasible region

How: Graphically solve the LP

$$\max_{x \in \mathbb{R}^n} c^T x$$

$$\text{s.t. } a_i^T x \leq b_i \quad \forall i \in M,$$

$$a_i^T x = b_i \quad \forall i \in M_1$$

$$x_j \geq 0 \quad \forall j \in N_1$$

$$x_j \leq 0 \quad \forall j \in N_2$$

where $M, M_1, M_2 \subseteq \mathbb{Z}_+$ are some index sets

$N, N_1, N_2 \subseteq \mathbb{N}$ index sets over the variables

given $c_i, (a_i)_{i \in M, i \in M_1, i \in M_2}, N_1, N_2$

note: $\max c^T x \equiv \min -c^T x$
 $a^T x = b \equiv a^T x \geq b \text{ AND } a^T x \leq b$
 $a^T x \geq b \equiv -a^T x \leq -b$

defn: objective; constraints; feasible region; free variables

Standard form: $\min_{x \in \mathbb{R}^n} c^T x$

$$a_i^T x = b_i \quad \forall i \in M$$

$$x_j \geq 0 \quad \forall j \in N$$

thus: all constraints are equalities

all variables are nonnegative

can convert any LP to an LP in standard form,

possibly by adding variables and constraints

① Removing free variables:

x_i free, replace x_i by $x_i^+ - x_i^-$

& add constraint $x_i^+ \geq 0, x_i^- \geq 0$

② Removing inequalities

convert all inequalities of the form " \geq " + " \leq "

for each constraint $a_i^T x \leq b_i$, add a slack var. s_i

replace constraint by $a_i^T x + s_i = b_i$

& add $s_i \geq 0$

(convince yourself that this works, i.e., if x is a feasible soln for original LP, $\exists \lambda, \mu$ s.t. (x, λ) is a feasible soln for modified LP.)

Usually, will write LP w/ vector & matrix notation:

$$\min_{x \in \mathbb{R}^n} c^T x$$

$$A x = b$$

$$x \geq 0$$

$$\text{where } x \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

$$A = \begin{bmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_m^T \end{bmatrix}, A_j \text{ is } j^{\text{th}} \text{ column of } A$$

Some basic defns

Given $P = \{x \in \mathbb{R}^n : A x \leq b\}$ be a polyhedron

- the set $\{x \in \mathbb{R}^n : a_i^T x = b_i\}$ is a hyperplane

- the set $\{x \in \mathbb{R}^n : a_i^T x \leq b_i\}$ is a halfspace

A polyhedron is the intersection of finitely many halfspaces i.e., $P = \{x \in \mathbb{R}^n : A x \leq b\}$ is a polyhedron

(thus, the feasible region of an LP is a polyhedron)

A bounded polyhedron is a polytope.

Basic feasible solns

let $P = \{x \in \mathbb{R}^n : A x \leq b\}$ be a polyhedron

Def 1: $x \in P$ is an extreme pt. if it is not a convex combination of 2 or more pts. in P ,

i.e., $\exists y_1, y_2 \in P, \lambda \in (0, 1)$ s.t. $x = \lambda y_1 + (1-\lambda) y_2$

Def 2: $x \in P$ is a vertex of P if there is a hyperplane that meets P exactly at x ,

i.e., $\exists c \in \mathbb{R}^n$ s.t. $c^T x > c^T y \forall y \in P, y \neq x$

Def 3: (basic feasible soln)

- constraint $a_i^T x \leq b_i$ is tight at x^* if $a_i^T x^* = b_i$

- if $a_i^T x^* = b_i$ (or binding or active)

- constraints $a_i^T x \leq b_i, \dots, a_k^T x \leq b_k$ are linearly independent if a_1, \dots, a_k are li.

Then $x^* \in P$ is a bts if n linearly independent constraints are tight at x^*

$(x^* \in \mathbb{R}^n)$ is a basic soln. if n linearly independent constraints are tight at x^*

again for a contradiction, suppose x^* is an extreme pt.

but not a bts.

then $\exists y_1, y_2 \in P, \lambda \in (0, 1)$ s.t. $x^* = \lambda y_1 + (1-\lambda) y_2$

but since x^* is a vertex, $c^T x^* > c^T y$ for some $c \in \mathbb{R}^n$.

then let $c = \sum a_i$. Then $c^T x^* = \sum b_i$

& hence x^* is a vertex

vector \rightarrow extreme pt.

Suppose for a contradiction x^* is a vtx. but not an extreme pt. Then $\exists y_1, y_2 \in P$ s.t. $x^* = \lambda y_1 + (1-\lambda) y_2, \lambda \in (0, 1)$

but since x^* is a vertex, $c^T x^* > c^T y$ for some $c \in \mathbb{R}^n$.

now consider the pts. x^*, y_1, y_2 - fed for some c .

if for any constraint $a_i^T x \leq b_i$ s.t. $a_i^T x^* = b_i$

constraint $a_i^T x^* = b_i$ is tight at x^*

then $a_i^T y_1 = a_i^T y_2 = b_i$

if for any constraint $a_i^T x \leq b_i$ s.t. $a_i^T x^* < b_i$

then $a_i^T y_1 > a_i^T y_2 > b_i$

if for any constraint $a_i^T x \leq b_i$ s.t. $a_i^T x^* > b_i$

then $a_i^T y_1 < a_i^T y_2 < b_i$

but $a_i^T y_1 > a_i^T y_2 > b_i$ & $a_i^T y_1 < a_i^T y_2 < b_i$

hence $a_i^T y_1 = a_i^T y_2 = b_i$

but $a_i^T x^* > a_i^T y_1 = a_i^T y_2 = b_i$

but $a_i^T x^* > a_i^T y_1 > b_i$

but $a_i^T x^* > a_i^T y_2 > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$

but $a_i^T x^* > a_i^T y_1 > a_i^T y_2 > a_i^T y_1 = b_i > b_i$